
NETWORK NOISE 1

Network Noise
Volume 3, Issue 2 Terry Christie, Editor May 1998

NOTES FROM DYNCORP

Kevin Kiah, DynCorp

First of all, Charlie and I want to thank all the
participants at the last CAIS conference held at
LLNL. We received a lot of good suggestions and
ideas for CAIS 2000. CAIS 3.5 will be released on
June 15, 1998. The 1998 engineering costs will be
included in the release along with the new
CAIS/FIMS interface, the summary condition
screen and 3 new reports to meet the deferred
maintenance requirements. DynCorp has added a
new programmer, Nick Stockton, to the CAIS
contract. He has a BS in Management Information
Systems from the Salisbury State University and is
well on his way to attaining an MS in
Telecommunications at the University of Maryland
at University College. Nick’s primary responsibility
will be to design, code and distribute CAIS 2000.
He will also help answer Hotline questions when
needed.

OVERVIEW OF THE
PROPOSED CHANGES TO

SITE-CAIS

Jesse Oak, Parsons Brinkerhoff

The following is a list of items discussed at the
DOE CAIS User’s meeting held the week of March
30 through April 3, 1998, at Lawrence Livermore
National Laboratory. The breakdown consists of
taking out the trash items, possible enhancements,
and other items discussed at the meeting. The plan
is to release a version of Site-CAIS around June 15,
1998 to include the Summary Condition Screen, the

enhanced FIMS/CAIS Interface, Deferred
Maintenance Reporting, and the 1998 Cost followed
by a new Site-CAIS version in the fall of 1999.
The following items have been identified for
removal from the Site-CAIS system:
The Download module.
The Upload module.
The project Promote module.
The Routes module.
Delete the old FIMS Interface module.
Delete all FIMS reference data on the Site Asset
Screen.
Delete all seismic references in the system such as
on the Asset Dimension Screen.
Remove the Equipment Archiving Module.
Delete the Survey Equipment linked in the
Inspection module.
Remove the field “Created by Upload” found on
the Detail 1 tab of the Asset screens.
Delete all “Effective” and “Ineffective” dates that
are not linked to costing or required for system
operation.
Remove the Work Order tab from the system.

The following items were discussed at the User’s
conference:
Look at making the Database View Generator user
friendly and effective.
Look at making the Data Analysis Packet user
friendly.
The CAIS/FIMS Interface module to be easier to
use and include the creation of the CAIS/FIMS
relationship, selection of the data to transfer, and
the creation of the output file.
Look at making the cost adders easy to see and use.
Incorporate Lawrence Livermore cost adders into
the existing system.
Look at creating site defined cost multipliers and
adders to the system.
Look at reworking the Equipment screens to

NETWORK NOISE 2

streamline data entry.
Look at reworking the Project module to make it
user friendly and eliminate the need to Post and
Unpost projects.
Change survey inspection units default to “in
condition”.
Look at changing the inspection units out of
condition only at the inspection unit level.
Look at making the Reports module easier to use
and to view.
Look at creating “memory” for data input into
select fields to avoid re-entry for duplication data.
Look at changing surveys to be virtual containers
for the inspection units creating the ability to track
deficiencies cradle to grave and place IU’s into
multiple surveys.
Keep the Inquiries module but rework the reports
to be user friendly.
Change the login procedure to something different
then user “CAIS” and password “CAIS” for better
system security.
Look at adding the deficiency sequence numbers
automatically generated by Oracle to the reports for
tracking purposes.
Look at reworking and simplifying the report
module.
Look at reworking the Archive module to save
existing survey data as read-only to freeze costs for
review only.
Look at creating the ability for sites to build their
own Project and Inspection Unit tags for sorting.
Revise system to be true 32-bit and user friendly.
Look at creating a generic import and export feature
in the system.
Look at revising the system tables to give the sites
the ability to easily modify, add, and delete the table
data. Certain tables such as WBS, Component,
Type, and Deficiency will remain locked to the sites
for consistency.
Digital photographs will not be incorporated into
the system. Sites with photos will look at using
Darrell’s Web based program.
Look at reworking the Master Equipment List
module to be easier to use and understand.
Look at creating the ability to send data to MS
Excel, Access, and Word, etc. for site customization
and reporting.
Look at developing an easy system for performing

tracking and trending of collected deficiencies.
Look at reworking the Data Analysis Packet and
Project modules to be simple easy to use processes.
Study how to rework the program to be intuitive
and flexible.

OAK RIDGE NATIONAL LAB
NOTES

Charles Lamb, Program Coordinator ORNL

The ORNL CAS Program is still alive and kicking.
We anticipate a lot of changes in the coming
months. As of April 1, 1998 a new sub-contractor
has moved on site. Bechtel/Jacobs has assumed
over ½ million square feet of ORNL floor space
and many other site projects. We are anxious to
begin a new relationship. We still don’t know
exactly how the CAS Program will be used. Our
inspectors just completed a requested inspection of
the Tower Shielding Facility to transition this facility
to Bechtel/Jacobs. Our goals are to continue the
cutting edge technology, that ORNL is noted for,
and the CAS Program is no exception. We are
striving hard to be the leader in the information
business. We have plans to increase the amount of
information on our web site, we are looking into
new software that will enable us to better
communicate and report our findings. It is up to
each individual person in the CAS network to make
our program the best that it can be.

WHAT IS LYNX?

Terry Christie, Oak Ridge National Laboratory

LYNX is a new type of software product that
incorporates the new state-of-the-art digital color
cameras into a complete Visual Documenting
System. These cameras do not require film or
processing. They store their images on memory
chips instead of film. The digital photos are
transferred directly to the computer’s hard disk.

The LYNX Visual Documenting System provides
all of the tools necessary to download the photos

NETWORK NOISE 3

from the camera, compress them, secure them from
tampering, file them in a high speed database with
attached notes, and link them to digital reports.
LYNX can instantly send its digital photos and
reports to other LYNX Systems via modem, floppy
disk, the Internet, WAN, LAN, etc.
How does LYNX differ from regular photo
software? Normal consumer photo software simply
downloads individual images from digital cameras as
individual graphic files, then lets the user manipulate
the images to brighten, crop, enlarge, etc. In
contrast, LYNX uses the photos as part of a
complete, secure Visual Documenting System that
can transfer its photos and reports between
sites…no matter how far apart they are!

LYNX also performs the following unique
functions:
• Automatically downloads digital photos directly

from a wide variety of digital cameras including
Kodak, Logitech, Dycam, and others.

• Compresses photos automatically. Just one
floppy disk will hold an average of 50
compressed photos!

• Automatically adds date and time stamps to
each photo. These date and time stamps cannot
be changed.

• Archive the original photos in a high-speed,
secure database, where they cannot be altered.
Copies of the secure photo can be exported or
placed in other documents (word processor,
slide show program, etc).

• Attaches an unlimited number of keywords to
each photo allowing them to be found instantly
at any time.

• Attaches photos to schedule activities
automatically linking them to Primavera Project
Planner (P3), SureTrak or Microsoft Project.

• Attaches a permanent description (up to 5,000
characters) to each photo.

• Files the photos to user defined jobs, and links
the photos to user defined reports in each job.
Each job can contain an unlimited number of
photos.

• Imports other images such as scanned photos,
still frames from VCR’s, faxes, etc. and allows
them to be filed to the jobs and attached to
LYNX’s reports.

• Exports and transfers the photo and reports
using the built-in file transfer system. The
secure LYNX transfer packets can be sent from
site to site using LYNX’s built in
telecommunications software, diskette, the
Internet, wide area network, e-mail, Remote
Access Service, or any other type network or
modem connection.

You can access more information on this system
via: http://www.trfsys.com/web/lynx/index.htm

PANTEX CAS PROGRAM?

Bob Von Eschen, Pantex

• “Doesn’t exist anymore and is not funded in the
next budget!” per the Pantex Plant Manager.
However only the name has been changed, to
“Facility Inspection”. Currently, Jerry and I
continue the assessments and report the
deficiencies to an ever-increasing clientele.

• A proposal has been presented to develop an
“Inspection Management Group” which would
combine the inspection forces of CAS and
construction, with training to the CAS Program
(Construction Standard Institute) Manuals.

• No official instruction has been received to
proceed with the “Deferred Maintenance Cost”
analysis, to the contrary our instructions are to
remain on “hold”.

• Official word has been issued that Pantex is to
downsize by about 390 persons by the end of
March 1999. Even though most of the
reduction is expected by attrition, some will
undoubtedly be let go. So far our group has not
been targeted, so plans are to see you at the next
network meeting.

NETWORK NOISE 4

SIZING YOUR CAIS DATABASE

Robert Hampton, Los Alamos National Laboratory

One of the biggest problems I've had as a CAIS Administrator has been trying to figure out how much space the
CAIS Database (any DB) is going to take up now and in the future. I recently read several articles about sizing
database objects (see References). Probably the most important aspect of this topic is figuring out how big your
tables and indexes are and how big they might get. Your Oracle Database Administrator's Guide will give you
guidelines but it is written in Greek by geeks. The listings that I have provided (plagiarized from before
mentioned articles) will help automatically size your tables and indexes and allow you to keep this info in your
database. Not only can these scripts help you keep track of your current database info (like num_rows, pct_free,
and pct_used) but you should be able to keep up with future growth trends.

The first thing that needs to be done is to capture all of the internal variables that Oracle tracks. The query in
Listing 1. Will do that assuming a default of 1 for INITRANS (initial transactions?) and 20 for PCTFREE (20%
free).

LISTING 1.

newspace.sql
show key values used in space calculations
set linesize 132
col db_block_size for a15
select (a.db_block_size-b.kcbh-c.ub4-d.ktbbh-f.kdbh
 -((j.ini_trans-1)*e.ktbit)) hsize,
 CEIL((a.db_block_size-b.kcbh-c.ub4-d.ktbbh-f.kdbh
 -((j.ini_trans-1)*e.ktbit))*(1-j.pct_free/100))- g.kdbt availspace,
 a.db_block_size,b.kcbh,c.ub4,d.ktbbh,e.ktbit,f.kdbh,g.kdbt, h.ub1,i.sb2,j.ini_trans,j.pct_free
from
(select "NAME" ,"VALUE" db_block_size from v$parameter where name = 'db_block_size') a,
(select "TYPE" ,"TYPE_SIZE" kcbh from v$TYPE_SIZE where "TYPE" = 'KCBH') b,
(select "TYPE" ,"TYPE_SIZE" ub4 from v$TYPE_SIZE where "TYPE" = 'UB4') c,
(select "TYPE" ,"TYPE_SIZE" ktbbh from v$TYPE_SIZE where "TYPE" = 'KTBBH') d,
(select "TYPE" ,"TYPE_SIZE" ktbit from v$TYPE_SIZE where "TYPE" = 'KTBIT') e,
(select "TYPE" ,"TYPE_SIZE" kdbh from v$TYPE_SIZE where "TYPE" = 'KDBH') f,
(select decode(g.kdbt,0,c.ub4,g.kdbt) kdbt from
(select "TYPE" ,"TYPE_SIZE" ub4 from v$TYPE_SIZE where "TYPE" = 'UB4') c,
(select "TYPE" ,decode("TYPE_SIZE",NULL,0,"TYPE_SIZE") kdbt from v$TYPE_SIZE ,dual
 where "TYPE"(+) = 'KDBT' and dummy = "TYPE"(+)) g) g,
(select "TYPE" ,"TYPE_SIZE" ub1 from v$TYPE_SIZE where "TYPE" = 'UB1') h,
(select "TYPE" ,"TYPE_SIZE" sb2 from v$TYPE_SIZE where "TYPE" = 'SB2') i,
(select 'INITRANS' ,1 ini_trans,
 'PCTFREE' ,20 pct_free from dual) j
/
Note: Use this newspace.sql query script to identify the internal variables in your Oracle database. (If you are
using a version of the database prior to Oracle7 Release 7.3.4, change all instances of column TYPE_SIZE to
SIZE for table v$type_size.)

NETWORK NOISE 5

Listing 1. should produce output like Table 1.

TABLE 1.

HSIZE AVAIL
SPACE

DR_BLOCK_
SIZE

KCBH UB4 KTBBH KTBIT KDBH KDBT UB1 SB21 N1_TRANS PCT_
FREE

8106 6481 8192 20 4 48 24 14 4 1 2 1 20

Use this information to check current utilization. You must know the current database block size
(db_block_size), how muchspace is left after Oracle allocates header space (HSIZE) and the big one how much
of the block can be used for data (AVAILSPACE).
Next, use Listing 2. To create sz_tables and sz_indexes tables to store all the critical sizing info.

LISTING 2.

create table sz_tables create table sz_indexes
((
owner varchar2(30) not null, owner varchar2(30) not null,
table_name varchar2(30) not null, index_name varchar2(30) not null,
tablespace_name varchar2(30), table_owner varchar2(30) not null,
avg_row_len number default 1, table_name varchar2(30) not null,
ini_trans number default 1, tablespace_name varchar2(30),
pct_free number default 20, ini_trans number,
pct_used number default 80, pct_free number,
num_rows number index_entry_size number,
) uniqueness varchar2(9)
/)
 /
Use Listing 3. to insert the index information (it can be interesting since you need to sum column lengths and
still keep track of the individual column).

LISTING 3.

insert into sz_indexes (
select z0.owner,
 z0.index_name,
 z0.table_owner,
 z0.table_name,
 z0.tablespace_name,
 z0.ini_trans,
 z0.pct_free,
 sum(decode(sign(z1.column_length-126),1,z1.column_
 length+2,z1.column_length+1)),
 z0.uniqueness
 from dba_indexes z0, dba_ind_columns z1
 where z0.owner = z1.index_owner
 and z0.index_name = z1.index_name
 and z0.table_owner = z1.table_owner

NETWORK NOISE 6

 and z0.table_name = z1.table_name
 and z0.owner = '<some_owner>'
 group by z0.owner,z0.index_name,z0.table_owner,z0.table_name,
 z0.tablespace_name,z0.ini_trans,z0.pct_free,z0.uniqueness)
/
The table info is much easier, see Example 1:

EXAMPLE 1.

insert into sz_tables (select owner,table_name,",avg_row_len,
 ini_trans,pct_free,pct_used,num_rows

from dba_tables where owner = '<some_owner>')

If you are simulating this exercise (i.e., you do not have real objects but are using data from users and analysts)
then create a flat file like Example 2.

EXAMPLE 2.

file.lst
<some_owner> Table01 50
<some_owner> Table02 100000
. . .
. . .
<some_owner> Table0n 13000

Example 3. shows a Unix script (Bourne Shell) to generate insert/update statements.

EXAMPLE 3.

crszsql.sh
more $1 | while read LINE
do
 OWNER='echo $LINE | awk '{print $1}' - | tr a-z A-Z'
 TABLE_NAME='echo $LINE | awk '{print $2}' - | tr a-z A-Z'
 NUM_ROWS='echo $LINE | awk "{print $3}"
 NEW_LINE="insert into sz_tables(owner,table_name,num_rows) \
 values ("$OWNER","$TABLE_NAME","$NUM_ROWS");'"
 echo $NEW_LINE
done

Pipe that info into another flat file (in Unix - sorry you NT guys will have to figure out your own stuff) like in
Example 4.

EXAMPLE 4.

<unix prompt> crszsql.sh file.lst > crszsql.sql
All you are trying to do here is get the initial info into the tables (sz_tables, sz_indexes).
Use Listing 4. to figure out estimated table sizes. The script generates Catalog numbers (from dba_tables) and

NETWORK NOISE 7

Analyzed numbers (from dba_tables and sz_tables).

LISTING 4.

--# tblrowsz.sql
--# use to look at table row sizes and rows per block
set echo off
set linesize 132
set pagesize 20
col owner for a08 head 'Owner'
col table_name for a30 head 'Table Name'
col cat_rowsize for 99999 head 'Catalog|Rowsize'
col cat_rows_per_block for 999999 head 'Catalog|Rows|per|Block'
col anl_rowsize for 99999 head 'Analyzed|Rowsize'
col anl_rows_per_block for 999999 head 'Analyzed|Rows|per|Block'
col anl_num_rows for 999999999 head 'Analyzed|Number|of Rows'
col anl_blocks for 999999 head 'Analyzed|Blocks|Needed'
col anl_space for 999999 head 'Analyzed|Space|Needed|(Meg)'
col cat_space for 999999 head 'Catalog|Space|Needed|(Meg)
col tbl_pct_free for 999 head 'Pct|Free'
col tbl_pct_used for 999 head 'Pct|Used'
select y.owner, y.table_name,
 (3*z.ub1)+y.rowsize cat_rowsize,
 FLOOR(availspace/((3*z.ub1)+y.rowsize)) cat_rows_per_block,
 (3*z.ub1)+avg_row_len anl_rowsize,
 FLOOR(availspace/((3*z.ub1)+avg_row_len)) anl_rows_per_block,
 num_rows anl_num_rows,
 FLOOR(num_rows/(FLOOR(availspace/((3*z.ub1)+avg_row_len)))) anl_blocks,
 FLOOR((db_block_size*FLOOR(num_rows/(FLOOR(availspace/
 ((3*z.ub1)+avg_row_len)))))/1024/1024) anl_space,
 FLOOR((db_block_size*FLOOR(num_rows/(FLOOR(availspace/
 ((3*z.ub1)+((3*z.ub1)+y.rowsize))))))/1024/1024) cat_space,
 tbl_pct_free,
 tbl_pct_used
from
(select owner,table_name,
 sum(decode(sign(data_length-249),1,data_length+3,data_length+1)) rowsize
 from sys.dba_tab_columns zz
 group by owner,table_name) y,
(select j.owner owner,
 j.table_name table_name,
 j.avg_row_len avg_row_len,
 j.num_rows num_rows,
 j.pct_free tbl_pct_free,
 j.pct_used tbl_pct_used,
 (a.db_block_size - b.kcbh - c.ub4 - d.ktbbh - f.kdbh - ((ini_trans-1)*e.ktbit)) hsize,
 CEIL((a.db_block_size - b.kcbh - c.ub4 - d.ktbbh - f.kdbh - ((ini_trans-1)*e.ktbit)) *

NETWORK NOISE 8

 (1 - pct_free / 100)) - g.kdbt availspace,
a.db_block_size,b.kcbh,c.ub4,d.ktbbh,e.ktbit,f.kdbh,g.kdbt,h.ub1,i.sb2,ini_trans,pct_free from
 (select "NAME" ,"VALUE" db_block_size from v$parameter where name = 'db_block_size') a,
 (select "TYPE" ,"TYPE_SIZE" kcbh from v$TYPE_SIZE where "TYPE" = 'KCBH') b,
 (select "TYPE" ,"TYPE_SIZE" ub4 from v$TYPE_SIZE where "TYPE" = 'UB4') c,
 (select "TYPE" ,"TYPE_SIZE" ktbbh from v$TYPE_SIZE where "TYPE" = 'KTBBH') d,
 (select "TYPE" ,"TYPE_SIZE" ktbit from v$TYPE_SIZE where "TYPE" = 'KTBIT') e,
 (select "TYPE" ,"TYPE_SIZE" kdbh from v$TYPE_SIZE where "TYPE" = 'KDBH') f,
 (select decode(gg.kdbt,0,c.ub4,gg.kdbt) kdbt from
 (select "TYPE" ,"TYPE_SIZE" ub4 from v$TYPE_SIZE where "TYPE" = 'UB4') c,
 (select "TYPE" ,decode("TYPE_SIZE",NULL,0,"TYPE_SIZE") kdbt from v$TYPE_SIZE ,dual
 where "TYPE"(+) = 'KDBT' and dummy = "TYPE"(+)) gg) g,
 (select "TYPE" ,"TYPE_SIZE" ub1 from v$TYPE_SIZE where "TYPE" = 'UB1') h,
 (select "TYPE" ,"TYPE_SIZE" sb2 from v$TYPE_SIZE where "TYPE" = 'SB2') i,
 (select owner,table_name,
 AVG_ROW_LEN avg_row_len,
 INI_TRANS ini_trans,
 PCT_FREE pct_free,
 PCT_USED pct_used,
 NUM_ROWS num_rows
from &dba_tables jj where jj.table_name like upper('&table_name%')) j) z where y.owner(+) =
z.owner and y.table_name(+) = z.table_name
/
undef table_name
undef dba_table
spool off

The info in Table 2. will help determine the report output and how you got the data.

TABLE 2.

Column dba_indexes sz_indexes
Catalog
Rowsize

The sum of column lengths
from dba_tab_columns

Same as for dba_tables
if table exists in catalog

Catalog Rows
per Block

The number of rows, given
the catalog rowsize, that
will fit into a block

Same as for dba_tables
if table exists in catalog

Analyzed
Rowsize

The avg_row_len from
dba_tables after an analyze
has been done on the table

The avg_row_len from
sz_tables

Analyzed Rows
per block

The number of rows, given
the analyzed avg_row_len,
that will fit into a block

The number of rows, given
the avg_row_len from
sz_tables, that will fit
into a block

Analyzed
Number of Rows

The value of num_rows from
dba_tables after an analyze
has been done on the table

The num_rows from
sz_tables

NETWORK NOISE 9

Analyzed
Blocks
Needed

The number of data blocks
needed, given the analyzed
rows per block and
analyzed number of rows

The number of data
blocks needed, given the
rows per block and
the number of rows
from the sz_tables data

Analyzed
Space Needed
(megabytes)

Total space needed,
determined by dba_block_
size, dba_tables, and
analyzed blocks needed

Total space needed,
determined by dba_block_
size, sz_tables, and
analyzed blocks needed

Catalog
Space Needed
(megabytes)

Total space needed
determined by catalog
blocks needed (not in report)
and analyzed num_rows
from dba_tables

Total space needed
determined by catalog
blocks needed (not in
report) and num_rows
from sz_tables

Pct Free The percentage free from
dba_tables

The percentage free from
sz_tables

Pct Used The percentage used from
dba_tables

The percentage used from
sz_tables

The tblrowsz.sql script should give output like Table 3.

TABLE 3.

Owner Table
Name

Catalog
Rowsize

Catalog
Rows
per
Block

Analyzed
Rowsize

Analyzed
Rows
per
Block

Analyzed
Number
of Rows

Analyzed
Blocks
Needed

Analyzed
Space
Needed
(Meg)

Catalog
Space
Needed
(Meg)

Pct
Free

Pct_
Used

<OWNER> <TABLE_01> 87 83 61 119 15963 134 1 1 10 60

<OWNER> <TABLE_02> 841 7 267 24 1958100 81587 637 2185 20 60

<OWNER> <TABLE_03> 1060 6 425 15 4220403 281360 2198 5495 20 40

<OWNER> <TABLE_04> 264 27 139 52 46322 890 6 13 10 60

<OWNER> <TABLE_05> 76 95 71 102 44200 433 3 3 10 60

Listing 5. will calculate your index sizes.

LISTING 5.

--# ixrowsz.sql
set linesize 132
col owner for a10 head 'Owner'
col index_name for a30 head 'Index Name'
col cat_index_entry_size for 9999990 head 'Catalog|Index|Entry|Size'
col cat_blocks for 99999990 head 'Catalog|Blocks|for|Index'
col cat_num_rows for 999999999 head 'Catalog|Number|of Rows'
col cat_space for 9999990 head 'Catalog|Space|Needed|(Meg)'

NETWORK NOISE 10

col sz_index_entry_size for 9999990 head 'Sizing|Index|Entry|Size'col sz_blocks for 99999990 head
'Sizing|Blocks|for|Index'
col sz_num_rows for 999999999 head 'Sizing|Number|of Rows'
col sz_space for 9999990 head 'Sizing|Space|Needed|(Meg)'
select y.owner,y.index_name,
 decode(y.uniqueness,'NONUNIQUE',1,0)+2+6+y.dba_index_entry_size cat_index_entry_size,
 1.05*((num_rows*(decode(y.uniqueness,'NONUNIQUE',1,0)+2+6+y.dba_index_entry_size)) /
 (availspace)) cat_blocks,
 num_rows cat_num_rows,
 (1.05*((num_rows*(decode(y.uniqueness,'NONUNIQUE',1,0)+2+6+y.dba_index_entry_size)) /
 (availspace)))*db_block_size/1024/1024 cat_space,
 decode(y.uniqueness,'NONUNIQUE',1,0)+2+6+y.sz_index_entry_size sz_index_entry_size,
 1.05*((sz_num_rows*(decode(y.uniqueness,'NONUNIQUE',1,0)+2+6+y.sz_index_entry_size)) /
 (availspace)) sz_blocks,
 sz_num_rows sz_num_rows,
 (1.05*((sz_num_rows*(decode(y.uniqueness,'NONUNIQUE',1,0)+2+6+y.sz_index_entry_size)) /
 (availspace)))*db_block_size/1024/1024 sz_space
 from
(select z0.owner,z0.index_name,
 sum(decode(sign(column_length-126),1,column_length+2,column_length+1)) dba_index_entry_size,
 z2.index_entry_size sz_index_entry_size,
 z0.uniqueness
 from &&dba_indexes z0, dba_ind_columns z1, sz_indexes z2
where z0.owner = z1.index_owner(+)
 and z0.index_name = z1.index_name(+)
 and z0.table_owner = z1.table_owner(+)
 and z0.table_name = z1.table_name(+)
 and z0.owner = z2.owner(+)
 and z0.index_name = z2.index_name(+)
 and z0.table_owner = z2.table_owner(+)
 and z0.table_name = z2.table_name(+)
 group by z0.owner,z0.index_name,z0.uniqueness,z2.index_entry_size) y,
(select j.owner,
 j.index_name,
 j.num_rows,
 j.sz_num_rows,
 (a.db_block_size - j.block_header) -
 ((a.db_block_size - j.block_header)*(pct_free/100)) availspace,
 a.db_block_size,b.kcbh,c.ub4,d.ktbbh,e.ktbit,f.kdbh,g.kdbt,h.ub1,i.sb2,j.ini_trans,j.pct_free
from
(select "NAME" ,"VALUE" db_block_size from v$parameter where name = 'db_block_size') a,
 (select "TYPE" ,"TYPE_SIZE" kcbh from v$TYPE_SIZE where "TYPE" = 'KCBH') b,
 (select "TYPE" ,"TYPE_SIZE" ub4 from v$TYPE_SIZE where "TYPE" = 'UB4') c,
 (select "TYPE" ,"TYPE_SIZE" ktbbh from v$TYPE_SIZE where "TYPE" = 'KTBBH') d,
 (select "TYPE" ,"TYPE_SIZE" ktbit from v$TYPE_SIZE where "TYPE" = 'KTBIT') e,
 (select "TYPE" ,"TYPE_SIZE" kdbh from v$TYPE_SIZE where "TYPE" = 'KDBH') f,
 (select decode(g.kdbt,0,c.ub4,g.kdbt) kdbt from
 (select "TYPE" ,"TYPE_SIZE" ub4 from v$TYPE_SIZE where "TYPE" = 'UB4') c,

NETWORK NOISE 11

(select "TYPE" ,decode("TYPE_SIZE",NULL,0,"TYPE_SIZE") kdbt from v$TYPE_SIZE ,dual
 where "TYPE"(+) = 'KDBT' and dummy = "TYPE"(+)) g) g,
 (select "TYPE" ,"TYPE_SIZE" ub1 from v$TYPE_SIZE where "TYPE" = 'UB1') h,
 (select "TYPE" ,"TYPE_SIZE" sb2 from v$TYPE_SIZE where "TYPE" = 'SB2') i,
 (select j0.owner,j0.index_name,
 (113+(24*j0.INI_TRANS)) block_header,
 j0.INI_TRANS ini_trans,
 j0.PCT_FREE pct_free,
 j1.NUM_ROWS num_rows,
 j2.NUM_ROWS sz_num_rows
 from &&dba_indexes j0, dba_tables j1, sz_tables j2
 where j0.index_name like upper('&index_name%')
 and j0.table_owner = j1.owner(+)
 and j0.table_name = j1.table_name(+)
 and j0.table_owner = j2.owner(+)
 and j0.table_name = j2.table_name(+)) j) z
 where y.owner = z.owner
 and y.index_name = z.index_name
/
undef index_name
undef dba_indexes

The info in Table 4. will provide data on index sizes along with source info.

TABLE 4.

Column dba_indexes sz_indexes
Catalog Index
Entry Size

The sum of column lengths
from dba_ind_columns

Same as for dba_indexes, if
index exists in the catalog

Catalog Blocks
for Index

The computed number of
blocks to hold index, given
the catalog index-entry size,
num_rows from dba_tables,
and available space
per block

Same as for dba_indexes, if
index exists in the catalog

Catalog Number
of Rows

The value of num_rows
from dba_tables

Same as for dba_indexes, if
index exists in the catalog

Catalog Space
Needed
(megabytes)

The calaculated space given
the cataloged blocks for
index and available space
per block

Same as for dba_indexes, if
index exists in the catalog

Sizing Index
Entry Size

Same as sz_indexes, if entry
in sz_indexes exists

Index_entry_size from
sz_indexes

Sizing Number
of Rows

Same as sz_indexes, if
entry in sz_indexes exists

The value of num_rows
from sz_tables

NETWORK NOISE 12

Sizing Space
Needed (megabytes)

Same as sz_indexes, if
entry in sz_indexes exists

The calculated space, given
the sizing blocks for index
and available space
per block

The output of the ixrowsz.sql script should look a lot like Table 5. This shows current and future size
estimates on the same line (an incredible concept) for planning DB growth.

TABLE 5.

Owner Index
Name

Catalog
Index
Entry
Size

Catalog
Blocks
for
Index

Catalog
Number
of Rows

Catalog
Space
Needed
(Meg)

Sizing
Index
Entry
Size

Sizing
Blocks
for
Index

Sizing
Number
of Rows

Sizing
Space
Needed
(Meg)

<OWNER> <INDEX_01> 19 11649 4220403 91 19 17473 6330605 137

<OWNER> <INDEX_02> 37 10529 1958850 82 37 15787 2937150 123

<OWNER> <INDEX_03> 28 197 48442 2 28 283 69483 2

<OWNER> <INDEX_04> 19 11649 4220403 91 29 26670 6330605 208

<OWNER> <INDEX_05> 37 10529 1958850 82 66 28161 2937150 220

<OWNER> <INDEX_06> 28 197 48442 2 48 485 69483 4

These scripts only cover the basics but it should get you started automating your database sizing. You may want
to capture growth info in another set of tables. Over several weeks you can determine all your needs for
tablespace sizes and hard drives. Los Alamos currently runs a deficiency based system where we can find from 1
to 30,000 deficiencies in a building. Many of these will never be fixed or even looked at again so storage
requirements for 2500 buildings and several thousand structures over 48 square miles can take a large set of
tables. Without proper sizing a database can crash like a big dog (or a small Stinson). If you are even remotely
interested in this subject the References are about a million times more useful than I could ever be.

REFERENCES:

• Space Estimations for Schema Objects, Appendix A,
• Oracle Server Administrator's Guide Release 8.0; Oracle Corporation, 1997.
• Millsap, Cary V.--Oracle7 Server Space Management, Revision 1.4b, OraPub (10/31/95)
• Shallahamer, Craig A.--Avoiding a Database Reorganization, OraPub (11/2/94) V2.2
• Koopmann, James F.--Cookbook for Sizing Objects, Oracle Magazine, Vol. XII, Number 3.

NOTES FROM THE
CHAIRMAN

Bob Von Eschen, Pantex, Network Chairman

I assume everyone got home from the Network
Meeting held at Lawrence Livermore National
Laboratory, without any incidents. Comments from
the meeting ranged from “Best Yet!” to “They seem

to get better and more information each time!” My
thanks goes out to PAUL REYNOLDS and the
many persons who supported him in facilitating the
meeting and lodging.

No final instruction has been received down the
“Chain of Command”, on the requirements,
reporting medium, and proceed authority for the
“Deferred Maintenance Cost Analysis”. Ken Baker
should have some information of the required effort

NETWORK NOISE 13

very soon, and some reaction comments from the
DOE Managers Meeting held in Chicago on April
23-24.

Set aside the week in October 19-23, 1998 to meet
at the next LCAM/CAS Network Meeting to be
held in Las Vegas. Mitzi Stone has volunteered to
ramrod the meeting with assistance from Dick
Schlueter, Mike Horn, and one of our previous
sponsors Bruce Charlton. Mitzi also has tentatively
setup a tour of the “Yucca Mountain Project”.
Spread the word and be sure to invite your DOE
Area and Operations Office personnel.

Keep in touch by participating in the monthly
Network conference call, held the second
Wednesday of each month at 11:00 Eastern Time.

Promote the CAS program at your every
opportunity.

CAIS HOTLINE

Charlie Lu, DynCorp

CAIS Hotline support now has a new FTP server to
serve the CAIS community’s needs.

The FTP address is 146.138.254.157

User name: cais
Password: cais

The FTP site has a new directory structure:
Download – Please download all your files here and
in your particular site subdirectory.
Upgrade – Find the latest Site-CAIS upgrade
software here.
Full – Find Full Site-CAIS installations here.

Beta – All beta site participants can find beta
software here.

Public – Generic area for transferring and
exchanging files (bug fixes, patches, sql scripts,
exchange of ideas).

Please feel free to give us input on how to make the
FTP site work better for you.

If you have nay problems using the FTP site please
feel free to call Kevin Kiah (301) 903-0923 or
Charlie Lu (301) 903-0923.

JUST A FEW FINAL
COMMENTS

Terry Christie, ORNL, Network Secretary

I would like to say that the last Network meeting
held at LLNL was great. Thanks goes out to Paul
Reynolds, Bill Denton, Nelda Fondse and all others
who were involved in the planning of this very
successful meeting. The folks in Las Vegas are
currently preparing things for our next meeting
which will be held October19-22, 1998. I hope
everyone will try to make every effort to attend this
meeting because we will be discussing the very
important issue of reports. Charlie and Kevin are
looking for input from the Network for what route
we wish to take for good reporting capability from
the CAIS data. I will be letting everyone know
further details of the meeting, as they become
available.

The article on the LYNX system, which is in this
newsletter, came from a brochure that was passed
out during a recent demonstration of this system. It
is a very impressive system and one, which our site
is considering purchasing. We are working on
getting a demonstration of the LYNX system at our
next meeting.

The next LCAM/CAS conference call will be held
Wednesday, May 13, 1998 at 11:00 EST. The phone
number for this call will be 202-287-1053. Please
try to make time to be on line for this call. If
anyone has anything they wish to discuss please let
myself or Bob know and we will make sure it is put
on the agenda.

The next newsletter will be in August.

Have a great summer.

